New York Wing

Standards/Evaluation Air Operations Safety Newsletter

Civil Air Patrol United States Air Force Auxiliary

June/July Vol 5 Issue 1 2019

Happy Summer Everyone, well almost, in a week or two. Anyway hope everyone is up and enjoying the weather when its cooperating! We have flight encampment going on in July, and just a lot of flying for cadets and maybe some flight instruction for our pilots who are a little rusty or getting ready for there initial or annual form 5 in your area. Enjoy and be safe.

I would like to draw your attention to something sometimes overlooked in regarding our C182T and that's the POH overall and the KOL in particular. The KOL (Kinds of Operations) gives the official list of what you can fly with or without in VFR, IFR, including day or night operations. It's like a MEL. Please read through and if you ever have a hiccup in one of our C182T look it up and see what should be done. Here's an example that took me by surprise a couple of months ago...

I was brought up flying mainly Cessna's and the old adage was if the beacon light does not work you can use the strobes and still fly. Well guess what, that is wrong. The beacon light is not considered in a Cessna generally and in the C182T in particular an anti-collision light. This is a necessary item to fly with regardless of day or night flight. Why...well from the FAA the beacon light on most Cessna's are a flashing light not a rotating light. Technically an anti-collision light is supposed to rotate like on most Piper's. The anti-collision light certified for most Cessna's and in particular the C182T is the strobes! So make sure during pre-flight you check they are working and turn them on when departing, leave them on during flight and you can shut them off after landing. If the strobes are not working (all of them) the plane is grounded till repaired. Look at the KOL checklist in the POH (2-12). Read our approved takeoff checklists (before takeoff...strobes on) and POH checklist (before takeoff...strobes on). Also since your actively reading the KOL checklist, fuel tank indicators must read correctly the amount of fuel. The old wives tale of they only have to be accurate if empty is not true (91.205). Each tank must indicate correctly (no red X's) or its grounded, its in the KOL list.

Since I have your attention on lights let me share what the FAA's preferred lighting regiment should be for all aircraft. This is not a regulation, but something they feel would add to safety and is recommended. In cockpit turn on beacon. After engine start and ready to taxi turn on Navs and taxi light (yes I know it mainly used for after sunset). When crossing or taking the runway, strobes on. When takeoff clearance is given landing lights on. All those lights should remain on, however landing/taxi light can be shut off once you reach cruse level. I would leave them on in training area. The idea is to be seen. Just like cars now have day running light and motorcycles, trucks and buses keep lights on. To be seen. I have been using this system for years now. For some reason GA pilots have an aversion to using lights. Let's not.

Be safe and have fun this season flying!

Semper Vigilans Major John A. Kolmos, CAP Assistant DOV, NY001

PROPWASH

This will be a new column for those who wish to give feedback on an issue, adding, subtracting,

disagree...etc. Should be fun and interesting. Here goes, some feedback from last issue:

NO COMMENETS FROM LAST ISSUE

Differences in C182T with GFC700 vs.KAP140

Be aware there are differences between these aircraft systems and the setups in the cockpits of the newer models of the C182T. Please read the POH. IP's and CP's should check there students in this regard. However for now lets review the trim disconnect procedure:

Both the KAP 140 and GFC 700 have required immediate action items published in the POH/PIM for Autopilot or Electric Trim Malfunction/Failure. These are the very similar for both autopilots and should be committed to memory—just as other emergency action items.

- 1. Control Wheel GRASP FIRMLY (regain control of airplane)
- 2. A/P TRIM DISC Button PRESS and HOLD (throughout recovery)
- 3. Elevator and Rudder Trim Controls ADJUST MANUALLY (as necessary)
- 4. AUTO PILOT Circuit Breaker OPEN (pull out)

o 5. A/P TRIM DISC Button - RELEASE WARNING

HUMAN FACTORS IN AVIATION

What Is the Human Factor Complacency (Two Types of Complacency)

The Human Factor Complacency is one of the most important Human Factors that you need to be aware of. It can happen with you are feeling satisfied with your safety, and it can happen when you are apathetic to your safety.

Complacency is the cause of countless safety incidents because of things like:

You've done this task many times with no problem;

You know how to do this task really well;

You are sure of the dangers that this task poses; and

You are sure that you are behaving safely.

The hallmark of complacency is an expectation of safety, which is what the above points result in. With this type of mindset, you are less likely to:

Be aware of new danger; Double check your work; and Be vigilant and considerate about your current actions.

The opposite of complacency is vigilance and verification.

Great Story That Demonstrates Consequences of Complacency

At an air force base in Guam, a routine check of a 1.4 *billion dollar* Stealth Bomber discovered that humidity was causing the pressure sensors to malfunction. No problem, it was a simple fix. End of story. Safety was restored

Except, this maintenance team and safety managers did not communicate to other maintenance crews to fix the sensor as well.

The result? Another maintenance crew overlooked the wet sensor, and the wet sensor didn't send important data – the kind that keeps the bombers flying – to the flight control system. As you would expect, the bomber crashed.

Complacency on both crews causes this 1.4 billion dollar accident – complacency in not communicating a simple fix, and complacency in (presumably) not noticing the wet sensor.

Common Behaviors That Demonstrate Complacency

One of the reasons complacency can be such a problem is that when you are feeling complacent or behaving complacently, you are rarely aware of it. Some common complacent behaviors while performing routine tasks are:

Thinking about other things, like you are on auto pilot; Not verifying your work; No feeling of "stress" about your task; Signing off on work you haven't ensured is complete; and Working exclusively from memory, as opposed to actively paying attention.

(Continued on next page)

Complacent behavior is most common when performing every day, boring, routine tasks, that, frankly, most people don't really want to do. It is no surprise that these tasks are associated with way more safety issues than they need to be.

It is during such routine tasks that you should make the greatest attempt at vigilance. Tiny mistakes can have significant consequences.

Causes of Complacency in Aviation Safety

Causes of Complacency in aviation safety are fairly straightforward:

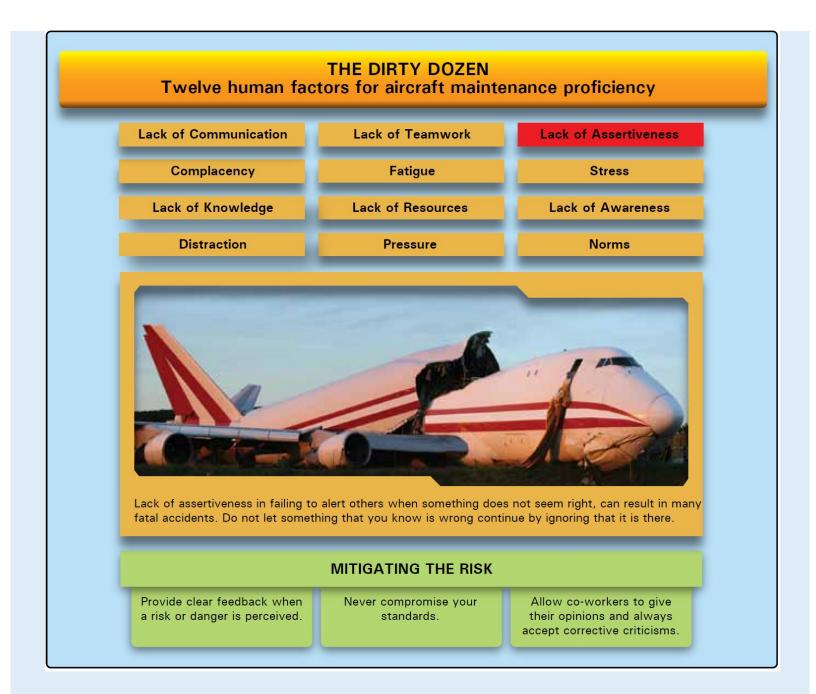
Feeling that things are safe;

Feeling confident that you know you performed the task safety, without double checking; Feeling sure that nothing could go wrong in such an ordinary procedure; and Feeling that something very trivial could not cause any harm.

Complacency is a feeling/mindset that leads to

How to Overcome Complacency

One anonymous person put it succinctly when they said, "Assume that everyone else doesn't know what they're doing, including yourself."


This is good attitude to have because:

The first precursor to danger is your assumption that you or anyone else is won't make mistakes.

In many ways, becoming really good at the operational side of your job can make you more prone to catastrophic errors, especially when you have seen success the past hundred times you have performed a task.

Past successes are not future guarantees. Trust that you know what you are doing. Trust that you can and will make mistakes. Trust that if you earnestly double check your work, you will find oversights.

Even though the above says aircraft maintenance proficiency, it works the same for flight crews

WHERE COMPLACENT	BRANDS GO	0
ANALY	YOC SAM	INVED THE
R.I.P. STUCK IN THE STATUS QUO	DISMISSED ANYTRING NEW AS A FAD	DIDNT TAKE CHALLENGERS SERIOUSLY

C182T Flight Regimes. Just targets, depends on temperature, density altitude, weight.

C182T Flight Conditions Checklist – exact numbers temperature dependent and engine age

Phase	МР	RP M	FLA P	PITC H	IA S	COWL	Comment
Take Off							BLTM
Normal T/O	Full	240 0	10	12.5	80	open	Rotate @ 59; @ 70kn: Flaps 0, MP23, pitch ~7.5
Short Field T/O	Full	240 0	20	17.5	58	open	Rotate @ 53; Flaps up @ 70Kn; then normal climb
Soft Field T/ O	Full	240 0	20	to Vx	65	open	Rotate into ground effect; Flaps up @ 70 Kn; then nor- mal climb
Climb	23	240 0	0	7.5	90	open	Lean to 15 GPH
Cruise	20	220 0	0	trim to IAS	11 0	close d	Lean to 10.5 GPH at 3,000-4,000'
Landing							
Downwind	16-18	full	0	trim to IAS	90	close d	Mixture Rich - GUMPS
Abeam	12-15	full	10	trim to IAS	80	close d	
Base	12-15	full	20	trim to IAS	80	close d	
Normal Final	10-12	full	full	trim to IAS	70	close d	Adjust flaps for wind
Short/Soft Field Final	to hold 60kn	full	full	trim to IAS	60	close d	Short: MP idle when clear obstruction, 60KIAS till flare; Soft: hold power on
Maneuvers							Clearing turns
Steep Turns	~18	220 0	0	3-4	11 0		16-18 winter 18-20 summer
Slow Flight- clean	18 initial	full	0	10	65	open	Mixture rich; CHT<400
Slow Flight- dirty	20 initial	full	full	7.5	55	open	Mixture rich; CHT<400

Vx=65

Vy=80

EMERGENCY PROCEDURES

ENGINE OUT

- F FUEL PUMP ON, CARB HEAT (If equipped in older C182 and C172), FUEL BOTH
- A AIRSPEED BEST GLIDE
- B BEST FIELD GPS NRST / VISUAL
- C CHECK LIST FLOW, check all fuels switches, etc.
- D DECLARE MAYDAY, who, what, where SQUAK 7700 DOOR OPEN
- E ELECTRICAL Battery (s) Off, after flap selection ELT ON
- F FUEL SELECTOR VALVE OFF
- G GOOD LUCK (this is your best day, right)

Component Failure	GFC 700	KAP 140
PDF (1)	Lose autopilot	No impact
AHRS (2)	Lose autopilot	Lose HDG, NAV, APR
ADC	Lose autopilot	Lose Alt capture
GIA 1	No impact on autopilot	No impact on autopilot
GIA 2	Lose autopilot	Lose NAV. APR
MFD	Autopilot remains on but modes cannot be changed	Lose NAV. APR

GIA 1 also lost when PFD fails

Magnetometer data lost when AHRS fails

GIA 2 also lost when MFD fails

G700 – if you change nav source the G700 lateral autopilot will disengage, if the system changes nav mode (i.e. RNAV to ILS app), the lateral autopilot will stay engaged.

KAP 140 – changing the nav mode (either by you or the system) will cause the lateral autopilot to disengage.

END NOTES

Anything you would like me to print or put in the next newsletter send to me at

jakolmos@gmail.com. Thanks.

"Semper Vigilans"

Maj. John A. Kolmos

NY-001 DOV-A

A LITTLE NOSTALGIA FROM THE GOOD OL 'E DAYS.....

N.Y. Wing Commander:

Col Thomas Carello

Director of Operations:

Lt Col Daniel Rogers

Director of Safety:

Lt Col Sean Neal

Standardization and Evaluation (DOV):

Lt Col Brian Benedict Newsletter Editor:

Maj. John A. Kolmos

Civil Air Patrol Core Values - Integrity, Excellence, Volunteer Service, and Respect

